A Bayesian Optimal Design for Sequential Accelerated Degradation Testing
نویسندگان
چکیده
When optimizing an accelerated degradation testing (ADT) plan, the initial values of unknown model parameters must be pre-specified. However, it is usually difficult to obtain the exact values, since many uncertainties are embedded in these parameters. Bayesian ADT optimal design was presented to address this problem by using prior distributions to capture these uncertainties. Nevertheless, when the difference between a prior distribution and actual situation is large, the existing Bayesian optimal design might cause some over-testing or under-testing issues. For example, the implemented ADT following the optimal ADT plan consumes too much testing resources or few accelerated degradation data are obtained during the ADT. To overcome these obstacles, a Bayesian sequential step-down-stress ADT design is proposed in this article. During the sequential ADT, the test under the highest stress level is firstly conducted based on the initial prior information to quickly generate degradation data. Then, the data collected under higher stress levels are employed to construct the prior distributions for the test design under lower stress levels by using the Bayesian inference. In the process of optimization, the inverse Gaussian (IG) process is assumed to describe the degradation paths, and the Bayesian D-optimality is selected as the optimal objective. A case study on an electrical connector’s ADT plan is provided to illustrate the application of the proposed Bayesian sequential ADT design method. Compared with the results from a typical static Bayesian ADT plan, the proposed design could guarantee more stable and precise estimations of different reliability measures.
منابع مشابه
Design and Analysis of Step Stress Accelerated Life Tests for Censored Data}
Life testing often is consuming a very long time for testing. Therefore, the engineers and statisticians are looking for some approaches to reduce the running time. There is a recommended method for reducing the time of failure, such that the stress level of the test units will increase, and then they will fail earlier than normal operating conditions. These approaches are called accelerated li...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملApplications of Bayesian Decision Theory to Sequential Mastery Testing
The purpose of this paper is to formulate optimal sequential rules for mastery tests. The framework for this approach is derived from empirical Bayesian decision theory. Both a threshold and linear loss structure are considered. The binomial probability distribution is adopted as the psychometric model involved. Conditions sufficient for sequentially setting optimal cutting scores are presented...
متن کاملDesign of Accelerated Life Testing Plans for Products Exposed to Random Usage
< p>Accelerated Life Testing (ALT) is very important in evaluating the reliability of highly reliable products. According to ALT procedure, products undergo higher stress levels than normal conditions to reduce the failure times. ALTs have been studied for various conditions and stresses. In addition to common stress such as temperature and humidity, random usage can also be considered as anoth...
متن کاملSecond Order Optimality of Sequential Designs with Application in Software Reliability Estimation
We propose three efficient sequential designs in the software reliability estimation. The fully sequential design the multistage sequential design and the accelerated sequential design. These designs make allocation decisions dynamically throughout the testing process. We then refine these estimated reliabilities in an iterative manner as we sample. Monte Carlo simulation seems to indicate that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017